

First Semester B.E. Degree Examination, June/July 2015

Engineering Mathematics - I

Time: 3 hrs.

Max. Marks:100

Note: Answer FIVE full questions, selecting at least TWO questions from each part.

MODULE-I

a. If $y^{\frac{1}{m}} + y^{-\frac{1}{m}} = 2x$ prove that

$$(x^{2}-1)y_{n+2} + (2n+1)xy_{n+1} + (n^{2}-m^{2})y_{n} = 0$$

b. Find the pedal equation for the curve

$$r^m = a^m \sin m\theta + b^m \cos m\theta$$

(06 Marks)

Derive an expression to find radius of curvature in cartesian form.

(07 Marks)

OR

2 a. Find the nth derivative of sin²x cos³x

(07 Marks) (06 Marks)

Show that the curves $r = a(1+\cos\theta)$ and $r = b(1-\cos\theta)$ intersect at right angles.

Find the radius of curvature when $x = a \log (sect + tant)$, y = a sect.

(07 Marks)

MODULE—II

Using Maclaurin's series expand tan x upto the term containing x⁵.

(07 Marks)

b. Show that
$$x \frac{\partial u}{\partial x} + y \frac{\partial u}{\partial y} = 2u \log u$$
 where $\log u = \frac{x^3 + y^3}{3x + 4y}$

(06 Marks)

Find the extreme values of $x^4 + y^4 - 2(x - y)^2$

(07 Marks)

Evaluate $\lim_{x\to 0} \left\{ \frac{e^x \sin x - x - x^2}{x^2 + x \log(1 - x)} \right\}$

(07 Marks)

b. If $u = x \log xy$ where $x^3 + y^3 + 3xy = 1$ Find $\frac{du}{dx}$

(06 Marks)

c. If
$$u = \frac{yz}{x}$$
, $v = \frac{xz}{y}$, $w = \frac{xy}{z}$, find $\frac{\partial(u, v, w)}{\partial(x, y, z)}$.

(07 Marks)

MODULE-III

a. Find div Fand Curl F where

$$\vec{F} = \text{grad} \left(x^3 + y^3 + z^3 - 3xyz \right)$$

(07 Marks)

Using differentiation under integral sign,

Evaluate
$$\int_{0}^{1} \frac{x^{\alpha} - 1}{\log x} dx \quad (\alpha \ge 0)$$

Hence find
$$\int_{0}^{1} \frac{x^{3} - 1}{\log x} dx$$

(06 Marks)

Trace the curve $y^2(a-x)=x^3$, a>0 use general rules.

(07 Marks)

OR

14MAT11

6 a. If $\vec{r} = xi + yj + zk$ and $\vec{r} = r$ then prove that $\nabla r^n = n r^{n-2} \vec{r}$

(07 Marks)

- b. Find the constants a, b, c such that $\vec{F} = (x + y + az)i + (bx + 2y z)j + (x + cy + 2z)k$ is irrotational. Also find ϕ such that $\vec{F} = \nabla \phi$ (06 Marks)
- c. Using differentiation under integral sign,

Evaluate
$$\int_{0}^{\infty} e^{-\alpha x} \frac{\sin x}{x} dx$$

(07 Marks)

MODULE-IV

7 a. Obtain reduction formula for $\int_{0}^{\frac{\pi}{2}} \cos^{n} x \, dx$

(07 Marks)

b. Solve: $(1 + 2xy \cos x^2 - 2xy) dx + (\sin x^2 - x^2) dy = 0$

(06 Marks)

C. A body originally at 80°C cools down to 60°C in 20 minutes, the temperature of the air bein 40°C. What will be temperature of the body after 40 minutes from the original? (07 Marks)

OR

8 a. Evaluate $\int_{0}^{2a} x^2 \sqrt{2ax - x^2} dx$

(07 Marks)

b. Solve: $xy(1 + x y^2)\frac{dy}{dx} = 1$

(06 Marks)

c. Find the orthogonal trajectories of the family of confocal conics $\frac{x^2}{a^2} + \frac{y^2}{b^2 + \lambda} = 1$ where λ is parameter.

(07 Marks)

MODULE-V

9 a. Solve by Gauss elimination method

$$5x_1 + x_2 + x_3 + x_4 = 4$$
, $x_1 + 7x_2 + x_3 + x_4 = 12$, $x_1 + x_2 + 6x_3 + x_4 = -5$, $x_1 + x_2 + x_3 + 4x_4 = -6$

690

b. Diagonalize the matrix $A = \begin{bmatrix} -19 & 7 \\ -42 & 16 \end{bmatrix}$

(06 Marks)

(07 Marks

c. Find the dominant eigen value and the corresponding eigen vector of the matrix

$$A = \begin{bmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{bmatrix}$$

by power method taking the initial eigen vector $(1, 1, 1)^1$

(07 Marks)

OR

10 a. Solve by L U decomposition method

$$x + 5y + z = 14$$
, $2x + y + 3z = 14$, $3x + y + 4z = 17$

(07 Marks)

(06 Marks)

b. Show that the transformation $y_1 = 2x_1 - 2x_2 - x_3$, $y_2 = -4x_1 + 5x_2 + 3x_3$,

 $y_3 = x_1 - x_2 - x_3$ is regular and find the inverse transformation.

c. Reduce the quadratic form $2x_1^2 + 2x_2^2 + 2x_3^2 + 2x_1x_3$ into canonical form by orthogonal transformation. (07 Marks)

* * * * *