

10EC52

USN

Fifth Semester B.E. Degree Examination, June/July 2015

Digital Signal Processing

Time: 3 hrs.

Max. Marks:100

Note: Answer FIVE full questions, selecting at least TWO questions from each part.

PART - A

1 a. Compute the DFT of the sequence $x(n) = \cos\left(\frac{n\pi}{4}\right)$ for N = 4, plot |x(k)| and $\angle x(k)$.

(09 Marks)

- b. Find the DFT of the sequence $x(n) = 0.5^n$ u(n) for $0 < n \le 3$ by evaluating $x(n) = a^n$ for 0 < n < N-1.
- c. Find the relation between DFT and Z transform.

(04 Marks)

- 2 a. State and prove the linearity property of DFT and symmetrical property. (05 Marks)
 - b. The five samples of the 8 point DFT x(k) are given as x(0) = 0.25, x'(1) = 1.25 j0.3018, x(6) = x(4) = 0, x(5) = 0.125 j0.0518. (05 Marks) Determine the remaining sample if the sequence x(n) is real valued?
 - c. For $x(n) = \{1, -2, 3-4, 5, -6\}$, without computing its DFT, find the following

i)
$$x (0)$$
 ii) $\sum_{k=0}^{5} \times (k)$ iii) $X(3)$ iv) $\sum_{k=0}^{5} 1 \times (k) |^{2}$ v) $\sum_{k=0}^{5} (-1)^{k} \times (k)$ (10 Marks)

- 3 a. Consider a FIR filter with impulse response $h(n) = \{1, 1, 1\}$, if the input is $X(n) = \{1, 2, 0, -3, 4, 2, -1, 1, -2, 3, 2, 1 -3\}$. Find the output y(n) using overlap add method. (12 Marks)
 - b. What is in plane computation? What is total number of complex additions and multiplication required for N =256 point, if DFT is computed directly and if FFT is used? (03 Marks)
 - c. For sequence $x(n) = \{ 2, 0, 2, 0 \}$ determine x(2) using Goertzel Filter. Assume the zero initial conditions. (05 Marks)
- 4 a. Find the circular convolution of $x(n) = \{1, 1, 1, 1\}$ and $h(n) = \{1, 0, 1, 0\}$ using DIF-FFT algorithm. (12 Marks)
 - b. Derive DIT-FFT algorithm for N = 4. Draw the complete signal How graph? (08 Marks)

PART – B

- 5 a. Design a Chebyshev analog filter (low pass) that has a -3dB cutoff frequency of 100 rad/sce and a stopband attenuation 25dB or greater for all radian frequencies past 250 rad/sec

 (14 Marks)
 - b. Compare Butterworth and Chebyshev filters.

(03 Marks)

Any revealing of identification, appeal to evaluator and /or equations written eg, 42+8 = 50, will be treated as malpractice. Important Note: 1. On completing your answers, completing draw diagonal cross lines on the remaining blank

- c. Let $H(s) = \frac{1}{s^2 + s + 1}$ represent the transfer function of LPF with a passband of 1 rad/sec. Use frequency transformation (Analog to Analog) to find the transfer function of a band pass fitter with passband 10 rad/sec and a centre frequency of 100 rad/sec. (03 Marks)
- 6 a. Obtain block diagram of the direct form I and direct form II realization for a digital IIR fitter described by the system function.

$$H(z) = \frac{8z^3 - 4z^2 + 11z - 2}{\left(z - \frac{1}{4}\right)\left(z^2 - z + \frac{1}{2}\right)}$$
(10 Marks)

b. Find the transfer function and difference equation realization shown in Fig.Q 6(b).

(06 Marks)

c. Obtain the direct form realization of linear phase FIR system given by

$$H(z) = 1 + \frac{2}{3}z^{-1} + \frac{15}{8}z^{-2}$$
 (04 Marks)

7 a. The desired frequency response of a low pass fitter is given by

The desired frequency response of a low
$$\int_{0}^{1} H_{d}(e^{jw}) = H_{d}(\omega) = \begin{cases} e^{-j3w} & |\omega| \frac{3\pi}{4} \\ 0 & \frac{3\pi}{4} < |\omega| < \pi \end{cases}$$

Determine the frequency response of the FIR if Hamming window is used with N = 7.

(10 Marks)

b. Compare IIR filter and FIR filters.

(06 Marks)

c Consider the pole-zero plot as shown in Fig Q.7(c) i) Does it represent an FIR fitter? ii) Is it linear phase system? (04 Marks)

10EC52

8 a. Design a digital filter H(z) that when used in an A/D-H(z)-D/A structures gives an equivalent analog filter with the following specification:

Passband ripple : ≤ 3.01dB Passband edge : 500Hz

Stopband attenuation : ≥ 15dB

Stopband edge: 750 Hz Sample Rate: 2 KHz

Use Bilinear transformation to design the filter on an analog system function. Use Butterworth filter prototype. Also obtain the difference equation. (14 Marks)

b. Transform the analog filter

$$H_a(s) = \frac{s+1}{s^2 + 5s + 6}$$

Into H(z) using impulse invariant transformation Take T = 0.1 Sec. eT () ABA ()

(06 Marks)