Sixth Semester B.E. Degree Examination, Dec.2015/Jan.2016 **Antennas and Propagation**

CENTRAL

Time: 3 hrs.

Max. Marks:1

Note: Answer FIVE full questions, selecting at least TWO questions from each part.

PART - A

- Define directivity. Obtain the relationship between directivity and beam area to show that 1 smaller the beam area, larger is the directivity.
 - b. Define antenna aperture. Derive the relationship between aperture and beam area. (06 Marks)
 - Show that maximum effective aperture of a short electric dipole is equal to 0.119 λ^2 .

(07 Marks)

- a. Find the power radiated and the directivity for the following 2
 - i) $U = U_m \sin^2 \theta \sin^3 \phi$ $0 \le \theta \le \pi$ $0 \le \phi \le \pi$
 - $0 \le \phi \le 2\pi$ ii) $U = U_m \cos^n \theta$ $0 \le \theta \le \frac{\pi}{2}$

(08 Marks)

- Obtain the relative field pattern for two isotropic point sources of same amplitude but opposite phase, spaced $\frac{\lambda}{2}$ apart. (08 Marks)
- c. State and explain power theorem.

(04 Marks)

- a. Derive the equation for radiation resistance of a short electric dipole. (08 Marks)
 - b. Explain the following: i) Folded dipole, ii) Rhombic antenna.

(08 Marks)

- c. A half wave dipole radiating in free space is driven by a current of 0.5 amperes at the terminals. Calculate E and H field at a distance 1 km from the antenna at angles of 45° and 90°. (04 Marks)
- Obtain the radiation resistance of a small loop antenna.

(07 Marks)

Write short notes on: i) Slot antenna, (ii) Patch antenna.

(08 Marks)

Find the radiation efficiency of a 1 meter diameter loop of 10 mm diameter copper wire at (i) 1MHz, (ii) 10 MHz. (05 Marks)

PART - B

- Determine the length L, H plane aperture and flare angles θ_E and θ_H of a pyramidal horn for which E-plane aperture $a_E = 10 \lambda$. The horn is fed by rectangular waveguide with TE_{10} mode. Let $\delta = 0.2~\lambda$ in the E-plane and 0.375 λ in the H-plane. Also find beam width and (08 Marks)
 - b. Write short notes on: i) Lens antenna; ii) Log periodic antenna

(08 Marks)

Design a Yagi-Uda six element antenna for operation at 500 MHz with a folded dipole field. What are the lengths of (i) reflector element, (ii) driven element, (iii) four director element? What is the spacing between reflector and driven element? (04 Marks)

- Derive an expression for resultant field intensity in the case of a space wave propagation. 6 (10 Marks)
 - Evaluate the roughness factors for the earth at 10 MHz, if $\sigma = 5$, for ' θ ' equal to (i) 30° , (ii) 45°, (iii) 60°. (05 Marks)
 - A transmitting antenna of 100 m height radiates 40 kW at 100 MHz uniformly in azimuth plane. Calculate maximum LOS range and strength of the received signal at 16 m high, receiving antenna at a distance of 10 km. At what distance would the signal strength reduce (05 Marks) to 1 mV/m?
- a. Explain the structure of ionosphere. Derive an expression for refractive index of ionospheric 7 (10 Marks) layer.
 - b. Define the following with respect to ionospheric propagation:
 - i) Critical frequency
 - ii) Virtual height (06 Marks)
 - Obtain the relationship between maximum usable frequency (MUF) and skip distance. C.

(04 Marks)

- Write short notes on: 8
 - a. Principle of pattern multiplication
 - b. Scanning array
- Aidh W confidential document ED**

(20 Marks)