## CBCS SCHEME



| USN |  |  |  |  |  |  | The same |  |  |  |
|-----|--|--|--|--|--|--|----------|--|--|--|
|-----|--|--|--|--|--|--|----------|--|--|--|

15EC71

# Seventh Semester B.E. Degree Examination, Dec.2018/Jan.2019 Microwaves and Antennas

Time: 3 hrs.

Max. Marks: 80

Note: Answer any FIVE full questions, choosing ONE full question from each module.

## Module-1

- a. Derive the general transmission line equation to find voltage and current on the line interms of position 'z' and time 't'. (07 Marks)
  - b. Describe the different mode curve in the case of reflex klystron.

(05 Marks)

c. A transmission line has a characteristic impedance of  $50 + j0.01\Omega$  and terminated in a load impedance of  $73 - j42.5\Omega$  calculate: i) reflection coefficient ii) SWR. (04 Marks)

#### OR

- 2 a. Define relection coefficient. Derive the equation for reflection coefficient at the load end at a distance 'd' from the load. (06 Marks)
  - b. Describe the mechanism of oscillation of reflex klystron.

(06 Marks)

c. A transmission line has the following parameters :  $R = 2\Omega/m$ , G = 0.5mmho/m, f = 1GHz, L = 8nH/m, C = 0.23pF/m. Calculate : i) characteristic impedance ii) propagation constant. (04 Marks)

#### Module-2

a. State and explain the properties of S – matrix.

(07 Marks)

- b. With a neat diagram, explain the working of precession type variable attenuator. (06 Marks)
- c. A 20mW signal is fed into one of the collinear port 1 of a lossless H-plane T junction. Calculate the power delivered through each port when other ports are terminated in matched load.

  (03 Marks)

#### OR

4 a. What is magic Tee? Derive its scattering matrix.

(06 Marks)

b. Discuss different types of coaxial connectors.

(04 Marks)

c. 2 transmission lines of characteristic impedance  $Z_1$  and  $Z_2$  are joined at plane PP'. Express S-parameters in terms of impedance when each line is matched terminated. (06 Marks)

#### Module-3

5 a. Explain the construction and field pattern for microstrip line.

(06 Marks)

- b. Explain the following terms as related to antenna system:
  - i) directivity ii) beam efficiency iii) effective aperture.

(06 Marks)

c. The effective apertures of transmitting and receiving antennas in a communication system are  $8\lambda^2$  and  $12\lambda^2$  respectively. With a separation of 1.5km between them. The EM wave travelling with frequency of 6 MHz and the total input power is 25KW. Find the power received by the receiving antenna. (04 Marks)

(06 Marks)

(06 Marks)



OR

- 6 a. Explain co-planar strip line and shielded strip line.b. Write a note on antenna field zones.
  - c. An antenna has a field pattern given by  $E(\theta) = \cos^2 \theta$  for  $0 \le \theta \le \pi/2$ . Find the beam area and directivity. (04 Marks)

## Module-4

- 7 a. Derive an expression and draw the field pattern for an array of 2 isotropic point sources with same amplitude and phase spaced  $\lambda/2$  apart. (06 Marks)
  - b. Show that the radiation resistance of  $\lambda/2$  antenna is  $73\Omega$ . (06 Marks)
  - c. A source has a radiation –intensity power pattern given by  $U = U_m \sin^2 \theta$  for  $0 \le \theta \le \pi$ ;  $0 \le \phi \le 2\pi$ . Find the total power and directivity. Draw pattern. (04 Marks)

#### OR

- 8 a. Derive the expressions for the far field components of short dipole. (06 Marks)
  - b. Explain the principle of pattern multiplication with an example. (06 Marks)
  - c. A source has a cosine radiation intensity pattern given by  $U = U_m \cos\theta$  for  $0 \le \theta \le \pi/2$  and  $0 \le \phi \le 2\pi$ . Find the total power and directivity. (04 Marks)

### Module-5

- 9 a. Derive the expression for strength Eφ and Hθ in case of small loop. (06 Marks)
  - b. Explain the working and design considerations of Log-periodic antenna. (06 Marks)
  - c. A 16-turn helical beam antenna has a circumference of λ and turn spacing of λ/4. Find:
    i) HPBW ii) axial ratio iii) directivity. (04 Marks)

#### OR

- 10 a. Show that the radiation resistance of small loop is  $31171 \left(\frac{A}{\lambda^2}\right)^2$ . (05 Marks)
  - b. Write a short notes on :
    - i) Yagi Uda array ii) parabolic reflector. (06 Marks)
  - C. Determine the length L, H-plane aperture and flare angles  $\theta_E$  and  $\theta_H$  of a pyramidal horn for which the E-plane aperture  $a_E = 10\lambda$ . Let  $\delta = 0.2\lambda$  in the E-plane and 0.375 $\lambda$  in the H-plane. Also determine beam widths and directivity. (05 Marks)