

10MAT31

Third Semester B.E. Degree Examination, Dec.2018/Jan.2019 Engineering Mathematics – III

Time: 3 hrs.

Max. Marks:100

Note: Answer FIVE full questions, selecting at least TWO full questions from each part.

PART - A

- 1 a. Find the Fourier series of $f(x) = \begin{cases} \pi + 2x & \text{in } -\pi \le x \le 0 \\ \pi 2x & \text{in } 0 \le x \le \pi \end{cases}$ (06 Marks)
 - b. Obtain Fourier half range sine series of $f(x) =\begin{cases} \frac{1}{4} x & \text{; } 0 < x < \frac{1}{2} \\ x \frac{3}{4} & \frac{1}{2} < x < 1 \end{cases}$ (07 Marks)
 - c. Find the Fourier series of y upto second harmonics from the following table:

x:	0	2	4	6	8	10	12
y:	9	18.2	24.4	27.8	27.5	22.	9

(07 Marks)

2 a. Find the Fourier transform of $f(x) = \begin{cases} 1 - x^2 & \text{for } |x| \le 1 \\ 0 & \text{for otherwise} \end{cases}$ and hence deduce that

$$\int_{0}^{\infty} \frac{x \cos x - \sin x}{x^3} dx = \frac{\pi}{4}.$$

(07 Marks)

- b. Find the inverse Fourier sine transform of $F_s(u) = \frac{1}{u}e^{-au}$, a > 0. (06 Marks)
- c. Find the Fourier cosine transform of $f(x) = \frac{1}{1+x^2}$.

(07 Marks)

- 3 a. Obtain the various possible solutions of the Laplace's equation $u_{xx} + u_{yy} = 0$ by the method of separation of variables. (07 Marks)
 - b. Solve the heat equation $u_t = c^2 u_{xx}$ subject to the conditions, u(0, t) = 0, u(10, t) = 0 and u(x, 0) = f(x) where $f(x) = \begin{cases} x & \text{in } 0 \le x \le 5 \\ 10 x & \text{in } 5 \le x \le 10 \end{cases}$ (06 Marks)
 - c. Obtain the D'Alembert's solution of the one dimensional wave equation. (07 Marks)
- 4 a. Fit a parabola of the form $y = ax^2 + bx + c$ to the following data:

x:	0	1	2	3	4	5
y:	1	3	7	13	21	31

(06 Marks)

- b. Minimize: z = 5x + 4y subject to the constraints $x + 2y \ge 10$, $x + y \ge 8$, $2x + y \ge 12$, $x \ge 0$, $y \ge 0$ by graphical method. (07 Marks)
- c. Maximize z = 6x + 9y subject to the constraints $2x + 2y \le 12$, $x + 5y \le 44$, $3x + y \le 30$, $x \ge 0$, $y \ge 0$ by applying simplex method. (07 Marks)

Important Note: 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining υιαικ μακών.

2. Any revealing of identification, appeal to evaluator and /or equations written eg, 42+8 = 50, will be treated as malpractice.

10MAT31

PART - B

- 5 a. Using Regula-falsi method find the real root of tanx + tanhx = 0, which lies between 2 and 3 carryout three iterations. (06 Marks)
 - b. Apply Gauss-Seidel method to solve equations 12x + y + z = 31, 2x + 8y z = 24, 3x + 4y + 10z = 58. Perform four iterations. (07 Marks)
 - c. Using Rayleigh power method find the largest eigen value and the corresponding eigen vector of the matrix $A = \begin{bmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{bmatrix}$ use $\begin{bmatrix} 1 & 0 & 0 \end{bmatrix}^T$ as initial vector, carry out six

iterations. (07 Marks)

6 a. From the following data, estimate the number of students who have scored less than 70 marks:

Marks:	0-20	20-40	40-60	60-80	80-100
No. of students:	41	62	65	50	17

(06 Marks)

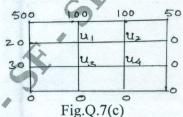
b. Use Lagrange's interpolation formula to fit a polynomial for the data:

x:	0 *	1	3	4
Ŋ:	-12	0	6	12

Hence estimate y at x = 2.

(07 Marks)

- c. Evaluate, $\int_{0}^{0.3} \sqrt{1-8x^3} dx$ by using Simpsons 3/8th rule, taking six equal parts. (07 Marks)
- 7 a. Solve $\frac{\partial^2 u}{\partial t^2} = 4 \frac{\partial^2 u}{\partial x^2}$ subject to u(0, t) = 0, u(4, t) = 0, u(x, 0) = x(4 x) by taking h = 1, k = 0.5 upto four steps. (07 Marks)
 - b. Solve $\frac{\partial^2 u}{\partial x^2} = 32 \frac{\partial u}{\partial t}$ subject to u(0, t) = 0, u(1, t) = t and u(x, 0) = 0 upto t = 5 by Bendre-Schmidt process taking $h = \frac{1}{4}$.
 - c. Solve $u_{xx} + u_{yy} = 0$ in the following square region with the boundary conditions as indicated in the figure: (06 Marks)



8 a. Find the Z-transforms of $\sinh \theta$ and $\cosh \theta$.

(06 Marks)

- b. If $\overline{u}(z) = \frac{2z^2 + 5z + 14}{(z 1)^4}$. Find the values of u_0 , u_1 , u_2 and u_3 . (07 Marks)
- c. Solve the difference equation $u_{n+2} + 4u_{n+1} + 3u_n = 3^n$ with $u_0 = 0$ and $u_1 = 1$ by using z-transform. (07 Marks)