

Fourth Semester B.E. Degree Examination, June/July 2016 Advanced Mathematics – II

Time: 3 hrs.

Max. Marks: 100

Note: Answer any FIVE full questions.

Find the angle between any two diagonals of a cube.

(07 Marks)

b. Prove that the general equation of first degree in x, y, z represents a plane.

(07 Marks)

c. Find the angle between the lines,

$$\frac{x-1}{1} = \frac{y-5}{0} = \frac{z+1}{5}$$
 and $\frac{x+3}{3} = \frac{y}{5} = \frac{z-5}{2}$.

(06 Marks)

2 a. Prove that the lines.

$$\frac{x-5}{2} = \frac{y-1}{1} = \frac{z-5}{2}$$

$$\frac{x-5}{3} = \frac{y-1}{1} = \frac{z-5}{-2}$$
 and $\frac{x+3}{1} = \frac{y-5}{3} = \frac{z}{5}$ are perpendicular.

(07 Marks)

b. Find the shortest distance between the lines.

$$\frac{x-6}{3} = \frac{y+5}{-16} = \frac{z-16}{7}$$

 $\frac{x-8}{3} = \frac{y+9}{-16} = \frac{z-10}{7}$ and $\frac{x-15}{3} = \frac{y-29}{8} = \frac{z-5}{-8}$.

(07 Marks)

c. Find the equation of the plane containing the point (2, 1, 1) and the line,

$$\frac{x+1}{2} = \frac{y-2}{3} = \frac{z+1}{-1}$$

(06 Marks)

- a. Find the constant 'a' so that the vectors $2\hat{\mathbf{i}} \hat{\mathbf{j}} + \hat{\mathbf{k}}$, $\hat{\mathbf{i}} + 2\hat{\mathbf{j}} 3\hat{\mathbf{k}}$ and $3\hat{\mathbf{i}} + a\hat{\mathbf{j}} + 5\hat{\mathbf{k}}$ are co-planar.
 - b. If $\vec{a} = 2\hat{i} + 3\hat{j} 4\hat{k}$ and $\vec{b} = 8\hat{i} 4\hat{j} + \hat{k}$ then prove that \vec{a} is perpendicular to \vec{b} and also find
 - c. Find the volume of the parallelopiped whose co-terminal edges are represented by the

$$\vec{a} = \hat{i} + \hat{j} + \hat{k}, \quad \vec{b} = 2\hat{i} + 3\hat{j} - \hat{k} \quad \text{and} \quad \vec{c} = \hat{i} - \hat{j} - \hat{k}$$

(06 Marks)

- a. Find the velocity and acceleration of a particle moves curve $\hat{\mathbf{G}} = e^{-2t}\hat{\mathbf{i}} + 2\cos 5t\hat{\mathbf{j}} + 5\sin 2t\hat{\mathbf{k}}$ at any time 't'. (07 Marks)
 - Find the directional derivative of x^2yz^3 at (1, 1, 1) in the direction of $\hat{i} + \hat{j} + 2\hat{k}$. (07 Marks)
 - c. Find the divergence of the vector $\vec{F} = (xyz + y^2z)\hat{i} + (3x^2 + y^2z)\hat{j} + (xz^2 y^2z)\hat{k}$. (06 Marks)
- a. $\vec{F} = (x+y+1)\hat{i} + \hat{j} (x+y)\hat{k}$, show that $\vec{F} \cdot \text{curl } \vec{F} = 0$. (07 Marks)
 - b. Show that the vector field, $\vec{F} = (3x + 3y + 4z)\hat{i} + (x 2y + 3z)\hat{j} + (3x + 2y z)\hat{k}$ is solenoidal. (07 Marks)
 - Find the constants a, b, c such that the vector field,

$$\vec{F} = (x + y + az)\hat{i} + (x + cy + 2z)\hat{j} + (bx + 2y - z)\hat{k}$$
 is irrotational.

(06 Marks)

MATDIP401

a. Prove that $L(\sin at) = \frac{a}{s^2 + a^2}$.

(07 Marks)

b. Find L[sint sin 2t sin 3t].

(07 Marks)

c. Find L cos³ t.

(06 Marks)

Find the inverse Laplace transform of $\frac{1}{(s+1)(s+2)(s+3)}$. 7

b. Find $L^{-1} \left| \log \left(1 + \frac{a^2}{s^2} \right) \right|$.

c. Find $L^{-1} \left[\frac{s+2}{s^2 - 4s + 13} \right]$.

- Find $L^{-1} \left[\log \left(1 + \frac{a^2}{s^2} \right) \right]$. (07 Marks)

 Find $L^{-1} \left[\frac{s+2}{s^2 4s + 13} \right]$. (06 Marks)

 Solve the differential equation, $y'' + 2y' + y = 6te^{-t}$ under the conditions y(0) = 0 = y'(0) by Laplace transform techniques. 8 Laplace transform techniques.
 - Solve the differential equation, y'' 3y' + 2y = 0 y(0) = 0, y'(0) = 1 by Laplace transform techniques.